
Computational Mechanics II - Project 1

Philip Moseley

April 27, 2010

1 Introduction

The advection-diffusion equation models situations where a substance is both transported and diffused through a
medium. The one dimensional advection-diffusion equation for a particle concentration φ can be written

u
dφ

dx
= v

d2φ

dx2
(1.1)

Where u is the transportation velocity and v is the diffusion coefficient, both of which are assumed to be constant
throughout the domain.

Solving the advection-diffusion equation using the standard Galerkin method can lead to oscillatory solutions
caused by spatial numerical instabilities. The Petrov-Galerkin method is designed to alleviate these problems by
essentially adding a viscous damping force. The implementation here is the Streamlined Upwind Petrov-Galerkin
(SUPG) method in one dimension.

A specific model is implemented to show the differences between the Galerkin and Petrov-Galerkin methods.
The simulation is a one meter segment of a long tube filled with solution. There is a steady state concentration of
5% at x = 0 and 20% at x = 1. The velocity u = 2.0 m/s and the diffusion coefficient v = 0.025 m2/s.

2 Analytical Solution

The advection-diffusion equation (1.1) can be solved as follows∫
Ω

d2φ

dx2
dΩ =

∫
Ω

u

v

dφ

dx
dΩ (2.1a)

dφ

dx
=

u

v
(φ+ C1) (2.1b)

This equation is solved for the homogeneous and inhomogeneous parts separately. The homogeneous part and it’s
general solution are

dφh

dx
=

u

v
φh (2.2a)

φh = C2e
ux
v (2.2b)

The inhomogeneous part and it’s solution are

dφi

dx
=

u

v
(φi + C1) (2.3a)

φi = −C1 (2.3b)

The final solution is therefore
φ = φh + φi = C1 + C2e

ux
v (2.4)

The constants C1 and C2 are solved from the boundary conditions, and for this problem are determined to be
C1 = 0.05 and C2 = 2.707× 10−36.

1



3 Finite Element Solutions

The Galerkin finite element discretization follows from the general form of the advection-diffusion equation (1.1).
Using the test function w(x) and integrating over the domain,∫

Ω

w

(
u
dφ

dx
− v

d2φ

dx2

)
dΩ = 0 (3.1)

From this, the weak form is ∫
Ω

wu
dφ

dx
dΩ+

∫
Ω

v
dw

dx

dφ

dx
dΩ = 0 (3.2)

For a uniform finite element mesh, the discrete equations become

φ

∫
Ωe

uNT dN

dx
dΩe + φ

∫
Ωe

u

(
dN

dx

)T
dN

dx
dΩe = 0 (3.3)

The Petrov-Galerkin formulation modifies the Galerkin test function by adding an additional term

w̃ = w + γ
dw

dx
(3.4)

where γ = α∆x
2 . In one dimension it is possible to select α such that the solution at the nodes is exact,

α = coth (Pe)−
1

Pe
(3.5)

which is based on the Peclet number,

Pe =
u∆x

2v
(3.6)

which will be shown to have a large effect on the stability of the solution.
The modified test function leads to the same terms as the regular Galerkin formulation in (3.2), plus additional

Petrov-Galerkin stabilization terms,∫
Ω

wu
dφ

dx
dΩ+

∫
Ω

v
dw

dx

dφ

dx
dΩ+

∫
Ω

uγ
dw

dx

dφ

dx
dΩ−

∫
Ω

vγ
dw

dx

d2φ

dx2
dΩ = 0 (3.7)

The fourth term depends on the second derivative of φ, but for linear shape functions this term drops to zero. So
for linear shape functions in a uniform grid, the discrete form of the Petrov-Galerkin is

φ

∫
Ωe

uNT dN

dx
dΩe + φ

∫
Ωe

v

(
dN

dx

)T
dN

dx
dΩe + φ

∫
Ωe

uγ

(
dN

dx

)T
dN

dx
dΩe = 0 (3.8)

If non-linear shape functions are used, the discarded fourth term must additionally be implemented.
It can be shown that the stability of the Galerkin method depends on the Peclet number, (3.6). If the Peclet

number is less than one, then the Galerkin discrete solution approaches the exact solution. For Peclet numbers
greater than one, the Galerkin discrete solution becomes oscillatory and the Petrov-Galerkin formulation is required.
To illustrate this, the example problem introduced in Section 1 is run with several different Peclet numbers. To
achieve the different Peclet numbers the resolution of the mesh is varied, using 10, 20, 50, and 100 elements.

The 10 and 20 element meshes result in Peclet numbers of 4.00 and 2.00, respectively. As shown in Figure 1,
the Galerkin method is unstable for these meshes and oscillates badly as x increases. Due to the proper choice of
α from (3.5), the Petrov-Galerkin method achieves the exact solution at the nodes, although the choice of linear
shape functions limits the accuracy between nodes.

2



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.05

0

0.05

0.1

0.15

0.2

x

φ
Elements: 10, Peclet Number: 4.00

 

 
Analytic
Petrov−Galerkin
Galerkin

(a) Pe = 4.00

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

x

φ

Elements: 20, Peclet Number: 2.00

 

 
Analytic
Petrov−Galerkin
Galerkin

(b) Pe = 2.00

Figure 1: Stability at Peclet numbers greater than 1.0

For the finer resolution meshes (50 and 100 elements), the Peclet numbers are 0.80 and 0.40, respectively. The
Galerkin method is stable for these values, and compares favorably to the Petrov-Galerkin and analytic solutions,
see Figure 2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

x

φ

Elements: 50, Peclet Number: 0.80

 

 
Analytic
Petrov−Galerkin
Galerkin

(a) Pe = 0.80

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

x

φ

Elements: 100, Peclet Number: 0.40

 

 
Analytic
Petrov−Galerkin
Galerkin

(b) Pe = 0.40

Figure 2: Stability at Peclet numbers less than 1.0

For all cases the Petrov-Galerkin calculates exact solutions at the nodes, due to the choice of α in one dimension.
However, the finer meshes give a better resolution of the solution. For the Galerkin method, increasing mesh
resolution results in more accurate values at the nodes.

4 SUPG Parameters

The choice of γ in the Petrov-Galerkin formulation plays a major role on the stability and accuracy of the solution.
The γ term essentially adds an artificial viscosity to the solution to dampen oscillations. Incorrect choices of γ can
lead to the solution being over-damped and inaccurate, or under-damped and oscillatory. In one dimension, γ can
be calculated such that the solution is exact at the nodes, (3.5).

In Figure 3 the solution with several values of γ has been plotted. With low damping values the solution remains
unstable, and with high values the solution is damped so much that the solution is no longer accurate.

3



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

x

φ
Elements: 20, Peclet Number: 2.00

 

 
Analytic
γ=10γ

0

γ=2.0γ
0

γ=γ
0

γ=0.5γ
0

γ=0.1γ
0

Figure 3: Different γ values, based off the γ0 exact solution.

5 Non-uniform Mesh

The stability problems of the Galerkin formulation are spatial instabilities, caused by problems with the mesh.
As shown in Section 3, refining the uniform mesh eliminates the oscillations, at the cost of increased computa-
tional effort. Selectively refining the mesh around key areas allows the Galerkin solution to remain stable without
unnecessary increased computation.

In the example problem, the mesh is refined near the spike in concentration. The mesh on x = [0.9, 1.0] is ten
times finer than the mesh from x = [0.0, 0.9]. The Peclet number is calculated based on the element length in
the refined area. For this simple problem and simple non-uniform mesh, this Peclet number still results in exact
solutions for the Petrov-Galerkin formulation.

4



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

x

φ
Elements: 6, Peclet Number: 1.33

 

 
Analytic
Petrov−Galerkin
Galerkin

(a) Pe = 1.33 with 6 elements

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

x

φ

Elements: 10, Peclet Number: 0.80

 

 
Analytic
Petrov−Galerkin
Galerkin

(b) Pe = 0.80 with 10 elements

Figure 4: Solutions for a simple non-uniform mesh.

For a more adaptively refined mesh, the calculation of the γ becomes more difficult, and it may not be possible
to calculate a γ resulting in the exact solutions.

5



6 Matlab Code

1 % Philip Moseley
2 % Computational Mechanics II − Project 1
3 % Solve the 1d advection diffusion equation using both the
4 % Galerkin and Petrov−Galerkin for comparison purposes.
5 function advection diffusion
6 clc; close('all');
7

8 for nel=[10,20,50,100] % Number of elements
9 %======================= Preprocessing =======================%

10 nne = 2; % Number of nodes in an element.
11 ngp = 1; % Number of Gauss points.
12 totlength = 1.0; % Total length of the domain.
13 vel = 2.0; % Particle velocity u.
14 diff coef = 0.025; % Diffusion coefficient v.
15 area = 1.0; % Cross−sectional area.
16 alpha = 10ˆ8; % Penalty factor for enforcing esential bcs.
17

18 % Determine the number of nodes and element connectivity matrix.
19 conn = zeros(nel,nne); nn = 1;
20 for i=1:nel
21 nn = nn−1;
22 for j=1:nne, nn = nn+1; conn(i,j) = nn; end
23 end
24 le = totlength/nel; % Element length.
25 nds = 0:le/(nne−1):totlength; % Nodal coordinates.
26 phi = zeros(nn,1); % Global concentration vector.
27 [gp,gw] = lgwt(ngp,−1,1); % Gauss quadrature points and weights.
28 [N,B,J] = shape functions(nne); % Shape functions.
29

30 % Boundary Conditions.
31 fixed nodes = [1,nn]; % List of nodes with essential BCs.
32 phi E = [0.05, 0.20]; % Prescribed values at nodes in fixed nodes.
33 forced nodes = []; % List of nodes with natural BCs.
34 phi N = []; % Prescribed values at nodes in forced nodes.
35

36 % Exact Solution, for error analysis. Need to modify C1,C2 based on BCs.
37 C2 = 0.15/(exp(vel/diff coef)−1);
38 C1 = 0.05−C2;
39 phi exact = @(x) C1 + C2*exp((vel/diff coef)*x);
40

41 nds
42 %========================== Solution =============================%
43 % Calculate Peclet number.
44 Pe = vel*le/(2.0*diff coef)
45 gamma = le/2.0 * (coth(Pe)−1.0/Pe)
46

47 % Calculate with Galerkin and Petrov−Galerkin methods.
48 for pg=[0,1] % Run the Galerkin, then Petrov−Galerkin.
49 L = sparse(nn,nn); % Global convective matrix.
50 K = sparse(nn,nn); % Global diffusion matrix.
51 F = sparse(nn,1); % Global external concentration vector.
52 % Develop element stiffness and force matrices.
53 for e=1:nel
54 xe = nds(conn(e,:));
55 Le = zeros(nne);
56 Ke = zeros(nne);
57

58 % Gauss Quadrature.
59 for q=1:length(gp)
60 Je = J(gp(q),abs(xe(2)−xe(1)));
61 Be = inv(Je)*B(gp(q));
62 Le = Le + area*det(Je)*vel*N(gp(q))'*Be*gw(q);
63 Le = Le + pg*area*vel*gamma*det(Je)*Be'*Be*gw(q);
64 %TODO: need another term here if using non−linear shape fns.
65 Ke = Ke + area*det(Je)*diff coef*Be'*Be*gw(q);
66 end
67

6



68 % Assembly.
69 I = conn(e,:);
70 L(I,I) = L(I,I) + Le;
71 K(I,I) = K(I,I) + Ke;
72 end
73

74 % Essential Boundary Conditions (penalty method).
75 BC = sparse(nn,nn);
76 for i=1:length(fixed nodes)
77 I = fixed nodes(i);
78 BC(I,I) = BC(I,I) + alpha;
79 F(I) = F(I) + alpha*phi E(i);
80 end
81 % Natural Boundary Conditions.
82 for i=1:length(forced nodes)
83 I = forced nodes(i);
84 F(I) = F(I)+area*phi N(i);
85 end
86 %%% SOLUTION %%%
87 phi(:,pg+1) = (K+L+BC)\F;
88 end
89

90 % Calculate exact solution for comparison purposes.
91 nds ex = 0:le/(nne−1)/1000:totlength;
92 phi ex = phi exact(nds ex);
93

94 %======================== Post processing ========================%
95 full(phi)
96 figure; plot(nds ex,phi ex,'−g',nds,phi(:,2),'−bo',nds,phi(:,1),'−rx');
97 legend('Analytic','Petrov−Galerkin','Galerkin','Location','NW');
98 grid on; xlabel('x'); ylabel('\phi');
99 title(sprintf('Elements: %d, Peclet Number: %.2f',nel,Pe));

100 print('−depsc', sprintf('mesh %d−pe %.2f.eps',nel,Pe));
101 end
102

103 %======================= Helper Functions ========================%
104 function [N,B,J] = shape functions(nne)
105 switch nne
106 case 2
107 N = @(x) [(1−x)/2.0 (x+1)/2.0];
108 B = @(x) 0.5*[−1,1];
109 J = @(x,le) le/2;
110 case 3
111 N = @(x) [x*(x−1)/2 −(x+1)*(x−1) x*(x+1)/2];
112 B = @(x) [(2*x−1)/2 −2*x (2*x+1)/2];
113 J = @(x,le) 0.0;
114 otherwise
115 N = []; B = []; J = [];
116 nne
117 end

7


